From 1 - 10 / 258
  • This data set provides processed Ku- and Ka-band fully-polarimetric backscatter and derived polarimetric parameters from hourly scans, acquired using the KuKa radar, during Legs 1, 2, 4 and 5 of the 2019-2020 MOSAiC International Arctic Drift Expedition. Scans were acquired during winter (Legs 1 and 2), advanced melt (Leg 4) and freeze-up (Leg 5) seasons, from various Remote Sensing (RS) sites, located in the MOSAiC ice floe. The first deployment of the KuKa radar was on 18 October 2019 at RS1 site and the radar was retreated (due to ice break up) on 18th November. The radar was redeployed on 29th November at RS2 site until 13th December when cracks were observed at the site and the instrument was turned off and moved to a safe location. The radar was redeployed at RS3 site and started measuring again on 21st December 2019 until 31st January 2020, after which the radar was taken off the RS site to conduct maintenance. The radar was not operational during Leg 3. During Leg 4, the radar was operational between 25th June and 19th July 2020, and later retreated back to the ship, for deployment in Leg 5. The radar was deployed on 24th August 2020 and operational until the end of the MOSAiC expedition. The dataset was collected by MOSAiC Team ICE participants and processed by Vishnu Nandan at the University of Manitoba, Canada. This work was funded in part through NERC grant NE/S002510/1, the Canada 150 Chair Program and the European Space Agency PO 5001027396. The authors thank Marine Environmental Observation, Prediction and Response Network (MEOPAR) Postdoctoral Fellowship grant to Vishnu Nandan. The authors also thank the crew of R/V Polarstern and all scientific members of the MOSAiC expedition for their support in field logistics and field data collection.

  • Temperature and precipitation data from the Weather Research and Forecasting model are bias-corrected against observations to create these bias-corrected gridded datasets over the Rio Santa River Basin (in the Cordillera Blanca) at 4 km horizontal resolution (d02), the Vilcanota-Urubamba region at 4 km horizontal resolution (d03) and the upper region of the Rio Santa River Basin at 800 m horizontal resolution (d04). The raw WRF data can be found in the related dataset. Full details of the bias-correction can be found in Fyffe et al., (2021). These data were corrected as part of the PEGASUS (Producing EnerGy and preventing hAzards from SUrface water Storage in Peru) and Peru GROWS (Peruvian Glacier Retreat and its Impact on Water Security) projects. The datasets were created to assess past climate in the Peruvian Andes, as a basis to determine future climate in the region, and as an input for glaciological and hydrological models. The data were created using the British Antarctic Survey high performance computer. The creation of this data was conducted under the Peru GROWS and PEGASUS projects, which were both funded by NERC (grants NE/S013296/1 and NE/S013318/1, respectively) and CONCYTEC through the Newton-Paulet Fund. The Peruvian part of the Peru GROWS project was conducted within the framework of the call E031-2018-01-NERC "Glacier Research Circles", through its executing unit FONDECYT (Contract No. 08-2019-FONDECYT).

  • These data were generated in a comparative study of protein metabolism (protein synthesis, protein growth and protein degradation) in the Antarctic plunderfish, Harpagifer antarcticus and the Northern European blenny, Lipophrys pholis. The study carried out an examination of protein metabolism in these species at a range over overlapping temperatures covering the environmental range of the species. Protein synthesis was measured using the flooding dose methodology in animals held at the British Antarctic Survey in Cambridge, UK. The experimental work was carried out by Andrew Bowgen and Keiron Fraser. The aim of the study was to examine the effect of ambient habitat temperature on protein metabolism in two ecologically similar, but phylogenetically distant fish species, including one that only inhabited polar latitudes. Andrew Bowgen was funded by a NERC PhD studentship and the study was completed as part of the British Antarctic Survey, Biodiversity, Function, Limits and Adaptations from Molecules to Ecosystems (BIOFLAME) project, part of the NERC funded Biological Responses to Extreme Antarctic Conditions and Hyperextremes (BIOREACH) programme.

  • This dataset presents the microparticle and ion fluxes from a set of ice cores from the Antarctic Peninsula and Ellsworth Land, as presented in Tetzner et al. (2022). Microparticle (MPC_flux) and ionic (nssCa+2_flux, nssK+_flux, ssNa+_flux, MSA_flux) data are provided as annual fluxes for the 1992-2019 CE interval. Annual fluxes were calculated as winter-to-winter averages. Data points represent the annual austral winter-to-winter average and are presented over the correspondent austral summer. The dataset comprises timeseries CSV files. The first column represents years between 1992 and 2019 CE, and the remaining columns represent annual flux data as the number of microparticles (particles) or ion concentration (ppb), multiplied by annual snow accumulation (kg m-2), listed for each ice core site alphabetically (Jurassic (JUR), Sherman Island (SHIC) and Sky-Blu (SKBL)). This dataset was created with the support of the Comision Nacional de Investigacion Cientifica y Tecnologica (grant number 72180432).

  • Coastline for Antarctica created from various mapping and remote sensing sources, provided as polygons with ''land'', ''ice shelf'', ''ice tongue'' or ''rumple'' attribute. Covering all land and ice shelves south of 60S. Suitable for topographic mapping and analysis. Data compiled, managed and distributed by the Mapping and Geographic Information Centre and the UK Polar Data Centre, British Antarctic Survey on behalf of the Scientific Committee on Antarctic Research. Major changes in v7.4 include updates to coastline and ice shelves between Gipps Ice Rise and Ronne Ice Shelf, updated ice shelf fronts for Brunt, Stange and West ice shelves, Pine Island Glacier, and an updated coastline for Adelaide Island.

  • Beached marine debris has been monitored on Signy Island since 1991. Data collection was carried out during summer months across three sites on the island: Foca Cove, Cummings Cove and Starfish Cove. This dataset summarises the amount of beached debris from monthly surveys by mass and type, with additional descriptions available. This monitoring contributes to the CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources) Marine debris program and is part of the long-term monitoring carried out by the British Antarctic Survey at Signy Island. Ecosystems component of BAS Polar Science for Planet Earth Programme, funded by NERC.

  • Persistent organic pollutant concentrations in artificial sea ice experiments at the Roland von Glasow Air-Sea-Ice Chamber (RvG-ASIC) at the University of East Anglia, UK. Experiments involved investigating chemical contaminant behaviours during sea ice formation and melt in order to assess possible exposure risk to sea ice biota. Funding was provided by: NERC ENVISION Doctoral Training Centre (NE/L002604/1). NERC and the German Federal Ministry of Education and Research (BMBF) funded Changing Arctic Ocean program EISPAC project (NE/R012857/1). British Antarctic Survey Collaboration Voucher. EUROCHAMP-2020 Infrastructure Activity under grant agreement (No 730997).

  • Subglacial Lake CECs was previously identified using radar profile data. Subglacial Lake CECs lies beneath 2650 m of ice, close to the Ellsworth Mountains at the divide between the Minnesota Glacier and Rutford and Institute Ice Streams in Antarctica. Four seismic reflection profiles were acquired across the lake to determine water column depth and investigate lake bed properties. Shot gathers with 48 channels and a maximum offset of 500 m were recorded. A seismic refraction experiment was undertaken to determine seismic velocities in the firn. Dual frequency and RTK GPS were used to determine shot locations. Seismic surveys indicate a maximum water depth of 301.3 +/- 1.5 m, at the widest part of the lake, with an estimated lake volume of 2.5 +/- 0.3 km3. Imaging of the ice-lake interface indicates topography with slopes of up to 1.9 degrees. This research was supported by the Natural Environment Research Council, British Antarctic Survey (Polar Science for Planet Earth Programme) and Centro de Estudios Cientificos, Valdivia, Chile.

  • This is the output from high-resolution model simulations of ocean conditions and melting beneath the floating part of Thwaites Glacier. The model is designed to study how these conditions change as the geometry of Thwaites Glacier evolved from 2011-2022. There is one simulation using the geometry from each year during this period, derived from satellite observations. The simulations are repeated for different ocean model forcing conditions, as described in the associated paper. PH was supported by the NERC/NSF Thwaites-MELT project (NE/S006656/1). ITGC contribution number 099.

  • This is distributed temperature sensing (DTS) data from a 1,043 m borehole drilled to the base of Sermeq Kujalleq (Store Glacier), Greenland, 28 km inland from the glacier terminus. The DTS system was installed on 5 July 2019, with recordings continuing until cable failure on 13 August 2019. The record resolution is ~0.65 m. This work was primarily funded and conducted as part of the European Research Council RESPONDER project (https://www.erc-responder.eu/) under the European Union''s Horizon 2020 research and innovation program (Grant 683043). Robert Law was supported by Natural Environment Research Council Doctoral Training Partnership studentships (Grant NE/L002507/1).