From 1 - 8 / 8
  • The Exploitation of new data sources, data assimilation and ensemble techniques for storm and flood forecasting Project is a NERC Flood Risk for Extreme Events (FREE) Research Programme project (Round 1 - NE/E002137/1 - Duration January 2007 - April 2010) led by Prof AJ Illingworth, University of Reading. This project investigates possible methods of producing ensemble weather forecasts at high-resolution. These ensembles will be used with raingauge and river flow to improve methods of flood forecasting. The dataset includes radiosonde and wind profiles in England and Wales derived using Doppler radar returns from insects. The radial velocity measurements from insects were converted into VAD profiles by fitting a sinusoid to radial velocities at constant range. All measured profiles have been interpolated to the instrument location. This dataset contains wind profiler measurements.

  • The Exploitation of new data sources, data assimilation and ensemble techniques for storm and flood forecasting Project is a NERC Flood Risk for Extreme Events (FREE) Research Programme project (Round 1 - NE/E002137/1 - Duration January 2007 - April 2010) led by Prof AJ Illingworth, University of Reading. This project investigates possible methods of producing ensemble weather forecasts at high-resolution. These ensembles will be used with raingauge and river flow to improve methods of flood forecasting. The dataset includes radiosonde and wind profiles in England and Wales derived using Doppler radar returns from insects. The radial velocity measurements from insects were converted into VAD profiles by fitting a sinusoid to radial velocities at constant range. All measured profiles have been interpolated to the instrument location. This dataset contains model output files from experiments assimilating radial winds from insects are also available.

  • The Exploitation of new data sources, data assimilation and ensemble techniques for storm and flood forecasting Project is a NERC Flood Risk for Extreme Events (FREE) Research Programme project (Round 1 - NE/E002137/1 - Duration January 2007 - April 2010) led by Prof AJ Illingworth, University of Reading. This project investigates possible methods of producing ensemble weather forecasts at high-resolution. These ensembles will be used with raingauge and river flow to improve methods of flood forecasting. The dataset includes radiosonde and wind profiles in England and Wales derived using Doppler radar returns from insects. The radial velocity measurements from insects were converted into VAD profiles by fitting a sinusoid to radial velocities at constant range. All measured profiles have been interpolated to the instrument location. This dataset contains temperature and pressure measurements from radiosondes.

  • The Exploitation of new data sources, data assimilation and ensemble techniques for storm and flood forecasting Project is a NERC Flood Risk for Extreme Events (FREE) Research Programme project (Round 1 - NE/E002137/1 - Duration January 2007 - April 2010) led by Prof AJ Illingworth, University of Reading. This project investigates possible methods of producing ensemble weather forecasts at high-resolution. These ensembles will be used with raingauge and river flow to improve methods of flood forecasting. The dataset includes radiosonde and wind profiles in England and Wales derived using Doppler radar returns from insects. The radial velocity measurements from insects were converted into VAD profiles by fitting a sinusoid to radial velocities at constant range. All measured profiles have been interpolated to the instrument location. This dataset contains UK Met Office model equivalent of radiosonde, radar and wind profiles.

  • The Exploitation of new data sources, data assimilation and ensemble techniques for storm and flood forecasting Project is a NERC Flood Risk for Extreme Events (FREE) Research Programme project (Round 1 - NE/E002137/1 - Duration January 2007 - April 2010) led by Prof AJ Illingworth, University of Reading. This project investigates possible methods of producing ensemble weather forecasts at high-resolution. These ensembles will be used with raingauge and river flow to improve methods of flood forecasting. The dataset includes radiosonde and wind profiles in England and Wales derived using Doppler radar returns from insects. The radial velocity measurements from insects were converted into VAD profiles by fitting a sinusoid to radial velocities at constant range. All measured profiles have been interpolated to the instrument location. This dataset contains radar measurements.

  • The Quantifying Flood Risk of Extreme Events using Density Forecasts Based on a New Digital Archive and Weather Ensemble Predictions Project is a Natural Environment Research Council (NERC) Flood Risk for Extreme Events (FREE) Research Programme project (Round 1 - NE/E002013/1 - Duration January 2007 - December 2008) led by Dr Patrick McSharry, University of Oxford. The dataset contains a collection of rainfall depth maxima data, dating back to 1860, plus associated description documents and rainfall maps of extreme events across the UK, have been used. All of these products have been digitised from the paper version of the British Rainfall publication, and are now archived at the BADC to enable easy access for future use and the wider community. Floods in the UK are often caused by heavy rainfall lasting from minutes to weeks. Efficient management and mitigation of flood risk, especially surface water flooding in urban areas, requires accurate and reliable precipitation forecasts as inputs to flood risk models. Houses in flat areas are particularly at risk and meeting the shortage of houses in the south-east requires building on these areas. To estimate the flood hazard risk in order to try to protect these buildings, accurate rainfall predictions are needed. However, the connection between record rainfall and flooding is highly nonlinear, so that rainfall predictions must also say how likely rainfall is at any time - calculating the probability of rainfall. Extreme rainfalls caused devastating floods in Boscastle in 2004 and Lynmouth in 1952, but the causes and pattern of rainfall was different. Therefore, scientists also need to know what pattern of rainfall caused the flooding. This research aims to get good quality predictions of the probability of rainfall by combining advanced methods from statistics, the output from a new supercomputer model of the weather, and a new computer archive of exteme rainfalls going back to 1866 (and up to 1968), provided by a specialist company Hydro-GIS Ltd. It also aims to produce an automatic system for discovering the most likely pattern in the predicted rainfalls. The new prediction system and data will be freely available over the internet for use by the government and universities.

  • The Exploitation of new data sources, data assimilation and ensemble techniques for storm and flood forecasting Project is a NERC Flood Risk for Extreme Events (FREE) Research Programme project (Round 1 - NE/E002137/1 - Duration January 2007 - April 2010) led by Prof AJ Illingworth, University of Reading. This project investigates possible methods of producing ensemble weather forecasts at high-resolution. These ensembles will be used with raingauge and river flow to improve methods of flood forecasting. The dataset includes radiosonde and wind profiles in England and Wales derived using Doppler radar returns from insects. The radial velocity measurements from insects were converted into VAD profiles by fitting a sinusoid to radial velocities at constant range. All measured profiles have been interpolated to the instrument location. Model output files from experiments assimilating radial winds from insects are also available. Floods in the UK are often caused by extreme rainfall events. At present, weather forecasts can give an indication of a threat of severe storms which might cause flash floods, but are unable to say precisely when and where the downpours will occur, due to the complex range of processes and space-time scales involved. The first stage is to predict the air motions leading to convergence and ascent at a certain location where the precipitation will be initiated, then the development of the precipitation needs to be forecast, and hydrological models used to produce accurate, quantitative, probabilistic flood predictions. Data assimilation is a sophisticated mathematical technique that combines observations with model predictions to give an analysis of the current state of the atmosphere. This analysis may be used to initialise a weather forecast. Although precipitation is well observed by weather radar, attempts to assimilate radar data have had little success; by the time the rain develops the forecast model state is too far from the truth and the air motions are inconsistent with the position of the first radar precipitation echo. We propose to overcome this problem by assimilating new types of data from weather radars. These provide information on the evolving humidity fields and air motions in the lower atmosphere so that the model can accurately track the developing storm before precipitation appears. The model used will be a new Met Office model that can be run with a resolution (i.e., grid-spacing) of order 1-4km. This enables storm-cloud motions to be explicitly calculated, rather than treated as a sub-grid-scale effect. Furthermore, current operational forecast models are only updated with observations every few hours; in the new approach the model will be updated much more frequently. This should yield weather forecasts with improved locations (in space-time) for rainfall events. Initialisation errors are not the only cause of inaccuracies in storm-scale weather forecasts. Models are often run only for a small region of the world, and the data on the boundaries of this area provided from a larger-scale model. These data are known as lateral boundary conditions. Errors in these lateral boundary conditions and modelling errors also contribute to the errors in the forecast. Even if these errors were reduced, the nonlinear nature of the storm dynamics ensures that there is a limit, beyond which the value of deterministic forecasts becomes questionable. After that point it becomes important to determine the uncertainties in the forecast precipitation, so an ensemble approach is required. (An ensemble is a collection of perturbed forecasts that may be considered as a statistical sample of the forecast probability distribution.) The appropriate construction of a storm-scale ensemble is an open question. We propose a structured approach where perturbations will be designed on the basis of physical insight into convective forcing mechanisms. The resulting probabilistic rainfall forecasts can be interfaced to hydrological models used for flood forecasting. For the first time, this project will allow different scales of application of these methods to be supported: ranging from localised flash flooding of small catchments, through to indicative first-alert forecasting with UK-coverage and forecasting of river discharges to the sea. The project will also assess the impacts of improvements in numerical weather prediction on flood forecast performance. In this project we anticipate fruitful interactions between the different disciplines of observations and measurement, meteorology and hydrology. Radar assimilation software development and ensemble forecasts will take place using Met Office models, so improvements can be implemented operationally very easily. The use of operational radars makes this project well placed to take advantage of data from any extreme events occurring during the period of the study.

  • The Flood Action Team (FLoAT) project is intended to collate a variety of data collected during the June and July 2007 Flood events in the UK (e.g. Tewkesbury event in 2007). This project is funded by the Natural Environment Research Council (NERC) - project Ref. R8/H12/69 - through the Flood Risk for Extreme Events (FREE) NERC directed mode programme. Aerial images of the Tewkesbury area, which include the river Severn and the river Avon, were collected during the flood events of summer 2007.