From 1 - 10 / 16
  • Daily outputs on a 7.5 km horizontal resolution grid covering the Greenland Ice Sheet from MARv3.6.2, which is a regional climate model developed for the Polar regions that solves the regional climate and ice sheet surface mass balance. MAR was forced by ERA-Interim re-analysis data.

  • These data are (1) porewater extractions of cores of the permafrost and active layer of Adventdalen, Svalbard, (2) solid-phase extractions of the same cores, and (3) in-situ porewater sampling from the end of the summer, 2017. The aqueous parameters are: major ions (Ca2+, Mg2+, Na+, K+, Cl-, NO3-, SO42-), Fe(aq), Mn(aq), aqueous CH4 and CO2 concentrations, delta 13C- CH4, acetate, propionic acid, isobutyric acid, butyric acid, isovaleric acid, valeric acid, isocaproic acid, caproic acid, heptanoic acid, pH, oxidation-reduction potential, dissolved oxygen and alkalinity. The solid parameters are: organic carbon, nitrogen, acid volatile sulphur (AVS), chromium-reducible sulphur (CRS), amorphous and nanoparticulate iron (oxyhydr)oxides, crystalline iron (oxyhydr)oxides, iron bound in carbonates, and magnetite. Funding was provided by the NERC grant NE/M019829/1.

  • This dataset contains all datasets used in Yang et al. ACP (2019), especially the model-data comparison data and pTOMCAT''s model experimental results. The data include pTOMCAT model output of sea salt aerosol (SSA) and the cruise data from the Weddell Sea, they include blowing snow particles and aerosol number density and regrouped size spectrum over open ocean, marginal sea ice zone and packed sea ice. It also contains monthly sea salt aerosol sodium concentrations at eight polar sites in both northern and southern hemispheres: Alert, Barrow, Summit, Palmer, Neumayer, Halley, Kohnen and Concordia (Dome C). The Weddell Sea particle data (both blowing snow and aerosol) are from 29m above the sea level (not including near surface data). The data period only covers 13 June-26 July 2013. To get access to a full cruise dataset, see the companion paper by Frey et al. (2019) and the DOI link. This study was supported by NERC-funded BLOWSEA project (NE/J023051/1) and the German RV Polarstern.

  • The database contains fasta sequences from UniProt and associated metadata for molluscan shell matrix proteins (SMPs). The database only contains SMPs that have been experimentally validated to be present in molluscan shell matrices (based on the publication(s) attached to the UniProtID). Metadata includes information on functional domains present in the sequence, as detected by InterproScan. With the advent of Next Generation Sequencing technologies, it is computationally resource intensive to run sequence similarity algorithms on all published data. Moreover, it is impractical to sort through hundreds of sequence similarity search results when working with non-model organisms, since pre-established functional annotations of sequences are generally not available. Therefore, this database was created in order to provide a targeted molluscan biomineralization dataset for sequence similarity algorithms (such as BLAST). Database created as part of doctoral research, funded under Marie Curie Innovative Training Networks (ITN) - Calcium in the Changing Environment (CACHE - Grant agreement 605051).

  • Two netcdf files are provided that contain daily precipitation amounts for January 1979 - July 2017 from the RACMO version 3p2 limited area, atmosphere-only model. The model is described in van Wessem, J. M., C. H. Reijmer, M. Morlighem, J. Mouginot, E. Rignot, B. Medley, and E. van Meijgaard, (2014) Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model, Journal of Glaciology, 60, 761-770. The model was run over a 262 by 240 grid point domain covering Antarctica and parts of the Southern Ocean. The model was forced at the lateral boundaries by data from the European Centre for Medium-range Weather Forecasting (ECMWF) Interim reanalysis (ERA-Interim). Flags are provided for extreme precipitation events. A precipitation day was taken as a daily total of precipitation of greater than 0.02 mm. Extreme precipitation events were then taken as days when daily precipitation amount was greater than the 90th percentile of the daily precipitation values over the period 1979 - 2016.

  • UTLs were used to determine whether whole animal acclimation had occurred in R. perrieri on heated settlement panels in the Antarctic. The panels were placed at 15m depth at two sites (South Cove and North Cove) near Rothera Research Station, Adelaide Island, Antarctic Peninsula (67.06861 S, 68.125 W). Heated and non-heated panels (one each of control, +1, +2) from the South Cove and North Cove sites colonised by R. perrieri were transferred to a 60 L jacketed tank with aerated sea water at the same temperature as the ambient sea water (0 degrees Celsius) and connected to a thermocirculator (Grant Instruments Ltd, Cambridge, UK). The temperature was raised at 1 degree Celsius h-1 with the temperature limit of each animal noted when they no longer responded to tactile stimuli. Funding was provided by the NERC grant NE/J007501/1.

  • Signals from VLF transmitters can leak from the Earth-ionosphere wave guide into the inner magnetosphere, where they propagate in the whistler mode and contribute to electron dynamics in the inner radiation belt and slot region. Observations show that the waves from each VLF transmitter are highly localised, peaking on the nightside in the vicinity of the transmitter. In this study we use ~5 years of Van Allen probe observations to construct global statistical models of the bounce-averaged pitch angle diffusion coefficients for each individual VLF transmitter, as a function of L*, Magnetic Local Time (MLT) and geographic longitude. We construct a 1D pitch-angle diffusion model with implicit longitude and MLT dependence to show that VLF transmitter waves weakly scatter electrons into the drift loss cone. We find that global averages of the wave power, determined by averaging the wave power over MLT and longitude, capture the long-term dynamics of the loss process, despite the highly localised nature of the waves in space. We use our new model to assess the role of VLF transmitters waves, hiss waves, and Coulomb collisions on electron loss in the inner radiation belt and slot region. At moderate relativistic energies, E~ keV, waves from VLF transmitters reduce electron lifetimes by an order of magnitude or more, down to the order of 200 days near the outer edge of the inner radiation belt. However, VLF transmitter waves are ineffective at removing multi-MeV electrons from either the inner radiation belt or slot region. Funding was provided by the NERC grant NE/P01738X/1.

  • Zooplankton faecal pellet abundance, volume and flux were determined from samples collected at three stations in the Scotia Sea, Southern Ocean during cruise JR304. Samples were collected at six depths within the 0 - 400 m epi- to upper mesopelagic using Niskin bottles attached to a CTD unit and were preserved in a formalin-based solution. Fluorescence data were collected during the same deployments. Sampling was performed by C. Liszka and G. Tarling on board RRS James Clark Ross. Sample analysis was performed by C. Liszka at British Antarctic Survey in Cambridge.

  • Adventdalen is a medium-sized (513 km2) catchment in continuous permafrost zone of central Spitsbergen. It has 11.7 % glacier cover, a large flat valley floor comprised of uplifted, glaciomarine sediments, covered in the lower part by a veneer of aeolian sediments up to 4 m thick. The geology of the catchment is dominated by sandstones, shales and carbonates. Freshwater samples were collected typically every second day throughout the principal runoff season (late May until early September) during 2015 and 2016 from a downstream site located at the head of the delta. Analysis of major ions (by ion chromatography) and minor constituents (trace metals by icpms and silica by colorimetric analysis). Funding was provided by the NERC grant NE/M019829/1.

  • Metrics of dark ice extent and duration, and snowline retreat estimates, for the south-west ablation zone of the Greenland Ice Sheet, derived from MODIS satellite imagery. These metrics are provided on a ~613 m grid at annual resolution and cover the melt season, defined as June-July-August each year. All scripts used to generate the metrics are also provided, as well as the scripts which generate the plots found in the referenced publication. Funding was provided by the NERC grant NE/M021025/1.