From 1 - 10 / 37
  • This poster on the UKCCSRC Call 2 project, Shelter and Escape in the Event of a Release of CO2 from CCS Infrastructure (S-CAPE), was presented at the Cranfield Biannual, 21.04.15. Grant number: UKCCSRC-C2-179.

  • This poster on the UKCCSRC Call 2 project Shelter and Escape in the Event of a Release of CO2 from CCS Infrastructure (S-CAPE) was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-179. Pipelines are acknowledged as one of the most efficient and cost-effective methods for transporting large volumes of various fluids over long distances and therefore the majority of proposed schemes for Carbon Capture and Storage (CCS) involve high pressure pipelines transporting CO2. In order to manage the risk in the event of the failure of a carbon dioxide (CO2) pipeline, it is a core requirement that a separation distance between pipelines and habitable dwellings is defined to ensure a consistent level of risk. The aim of this project is to develop validated and computationally efficient shelter and escape models describing the consequences to the surrounding population of a CO2 release from CCS transportation infrastructure. The models will allow pipeline operators, regulators and standard setters to make informed and appropriate decisions regarding pipeline safety and emergency response. This poster presents some preliminary findings from the S-Cape project and: • Describes the development of analytical and Computational Fluid Dynamic (CFD) models to calculate the change in internal CO2 concentration within a building engulfed by a dispersing cloud of CO2. • Investigates the sensitivity of the CO2 concentration within a building to wind speed and the temperature of the CO2 in the pipeline. • Demonstrates how CFD models can be used to verify results obtained using computationally efficient analytical models.

  • Grant: SCAPE (UKCCSRC Call 2). This is a Matlab code that calculates the change in internal concentration of CO2 in a building as a cloud of CO2 engulfs the building. The CO2 is assumed to enter through any openings in the building. This Matlab code take a series of inputs including wind speed, building geometry, geometry of external temperature and external CO2 concentration (all inputs are listed in the headers of the spreadsheet ‘inputs.xlsx’) and calculates how the internal CO2 concentration and temperature changes over time and the toxic dose of CO2 received by individuals inside the building. Full details will be given in publication https://doi.org/10.1016/j.ijggc.2019.102849. File formats: .xlsx and .m

  • This presentation on the UKCCSRC Call 1 project 3D Mapping of Large-Scale Subsurface Flow Pathways using Nanoseismic Monitoring was presented at the UKCCSRC Manchester Biannual Meeting, 13.04.2016. Grant number: UKCCSRC-C1-19.

  • Simplified reservoir models are used to estimate the boundary conditions (pressure, temperature and flow) that are relevant to the primary aims of this project. A set of boundary conditions are defined at the wellhead that represent the behaviour of the store. Data relates to publication: Sanchez Fernandez, E., Naylor, M., Lucquiaud, M., Wetenhall, B., Aghajani, H., Race, J., Chalmers, H. Impacts of geological store uncertainties on the design and operation of flexible CCS offshore pipeline infrastructure (2016) International Journal of Greenhouse Gas Control, 52, pp. 139-154. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978197316&doi=10.1016%2fj.ijggc.2016.06.005&partnerID=40&md5=d567f0e06f561613554a1f1c2e230194 DOI: 10.1016/j.ijggc.2016.06.005

  • Compilation of CO2 release field experiments conducted worldwide for which the research results are publicly available prior to May 2017. This includes 14 field sites and 41 field experiments. For each field site, where possible, there is data on: The project: including primary aims, partners, total funding, duration, current status, website. Site information: including geology (target formation and overburden), hydrology, environment. Field experiment set-up: including injection depth, well orientation. Summary activity: total number of experiments at the site, total CO2 released. For each experiment at each site, where possible, there is data on: Injection parameters, including injection strategy, rate, duration, start and end date, CO2 source and properties, use of tracers; Site parameters, such as groundwater depth at time of experiment; Leakage to surface, including whether CO2 leakage to surface occurred, quantitation; Characteristics of surface leakage, including location, distribution, time taken to reach surface, evolution as experiment progresses; Subsurface CO2 spread, in soil gas and groundwater interaction, environmental impact; Monitoring including area monitored, duration of monitoring before, during, and after the release. Data sources are clearly cited. Paper reference: https://www.sciencedirect.com/science/article/pii/S0012825218304264?dgcid=author.

  • This poster on the UKCCSRC Call 1 project 3D Mapping of Large-Scale Subsurface Flow Pathways using Nanoseismic Monitoring was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C1-19. Injection of fluids into geological formations induces microseismic events due to pressure changes causing either opening mode or shear mode fracturing. Injection for CO2 storage is designed to be well below the pressures required for hydraulic fracturing. Due to the inherent heterogeneity of geological formations, some existing structures will be critically stressed so small microseismic events are inevitable. Current reservoir monitoring strategies either examine time-lapse variations in the rock’s elastic properties (4D seismic) over diffuse areas, or aim to detect leakage from diffuse and point sources at the seabed (e.g. the QICS project). The aim of the project is twofold: • test the potential of a new technology (nanoseismics) for passive seismic monitoring that aims to image focused flow pathways at depth of an active CO2 injection site: the Aquistore site, Canada; • use a multi-disciplinary approach to interpret passive seismic data sets obtained during operation of the same site.

  • This poster on the UKCCSRC Call 2 project Shelter and Escape in the Event of a Release of CO2 from CCS Infrastructure (S-CAPE) was presented at the UKCCSRC Manchester Biannual Meeting, 13.04.2016. Grant number: UKCCSRC-C2-179.

  • The project will three-dimensionally image hydraulically conductive features in the reservoir, caprock and overburden of an active CO2 injection site: the Aquistore site, Canada. Our research will provide important information on potential migration pathways within the storage complex to inform future monitoring strategies at the Aquistore site and at future storage sites. We will monitor micro-seismic events prior to, and during, CO2 injection using a three-component nanoseismic surface monitoring array which will complement data collected by the existing geophone network at the site. This analysis can be used to provide deep focussed monitoring information on permeability enhancement near the injection point. As injection continues it will also enable imaging of any flowing features within the caprock. Grant number: UKCCSRC-C1-19.

  • This poster on the UKCCSRC Call 1 project, Flexible CCS Network Development, was presented at the Cranfield Biannual, 21.04.15. Grant number: UKCCSRC-C1-40.