215 record(s)
Type of resources
Contact for the resource
Provided by
Representation types
Update frequencies
From 1 - 10 / 215
  • This dataset contains the codes for water laboratory analysis, sampling dates and locations for soil samples collected from the Tamar catchment in winter 2013/2014 as part of the South West project. It contains soil chemistry data for metals and mineral contents of samples soils. It should be used in conjunction with datasets describing soil bacteria and soil eukaryote operational taxonomic unit sequence data. Full details about this dataset can be found at

  • The dataset details global positioning system (GPS) locations recorded for survey quadrats at six UK saltmarsh sites. Three of the sites were in Morecambe Bay, North West England and three of the sites were in Essex, South East England, each of these sites consisted of a salt marsh area and adjacent mudflat area. Each site comprised 22 quadrats on the unvegetated mudflat and 22 quadrats on the salt marsh. The locations indicated by this dataset correspond to the south-east corner of the quadrats which were 1m square and oriented with their sides aligned North-South and East-West. This data was collected as part of Coastal Biodiversity and Ecosystem Service Sustainability (CBESS): NE/J015644/1. The project was funded with support from the Biodiversity and Ecosystem Service Sustainability (BESS) programme. BESS is a six-year programme (2011-2017) funded by the UK Natural Environment Research Council (NERC) and the Biotechnology and Biological Sciences Research Council (BBSRC) as part of the UK's Living with Environmental Change (LWEC) programme. Full details about this dataset can be found at

  • This data was collected during two Antarctic field seasons (2013-14, 2014-15) using two Leica GS10 dual-frequency Global Position Systems (dGPS). We installed 53 2m aluminium stakes in the snow surface along lines perpendicular to ice divides on four ice rises in the Ronne Ice Shelf region. In each season we used the dGPS units to measure the position of each pole. During most position measurements we deployed a rover unit for 20 minutes at each stake while a static base station dGPS unit was left in place for 5 or more hours. In the minority of cases the power to the base station unit failed and data from the rover unit is not accompanied by base-station data.

  • The data set comprises a series of ten reports containing tables of current data and diagrams of trajectories derived from neutrally buoyant floats deployed in seas across the globe. The floats were numbered between 1-180 and 209-227, with floats 1-180 being deployed between 1955 and 1964 and floats 209-227 being deployed between February and March 1969. Detailed deployment information is listed below, with deployment location, float numbers, deployment dates and ship name (if known). NE Atlantic: floats 1-5 (Jun 1955, Oct-Nov 1955); float 11 (Aug 1956); floats 12-20 (Mar 1957); floats 25-33 (May-Jul 1958); floats 34-39 (Nov 1958). Norwegian Sea: floats 6-10 (Apr-May 1956). NW Pacific: floats 21-24 (Jul-Aug 1957). Deep water off Bermuda: floats 40-53, 55, 58 (Jun-Oct 1959, RV Aries); floats 54, 56, 57 (Oct 1959, RV Crawford); floats 59-60,64-65,68, 69,71,73-74 (Jun-Dec 1959, RV Aries); floats 61-63,66, 67,70,72 (Nov 1959, RV Crawford); floats 75-77 (Dec 1959, RV Atlantis); floats 78-98 (Feb-Jun 1960, RV Aries); floats 99-119 (Jun-Aug 1960, RV Aries). Faroe-Shetland Channel: floats 120-127 (Jul 1961, RRS Discovery). Faroe Bank Channel: float 135 (1963, Ernest Holt). Labrador Sea: floats 128-132 (1962, Erika Dan). Arabian Sea: floats 133, 134, 136-139 (Jul-Aug 1963, RRS Discovery). Indian Ocean: floats 140-160 (Mar-Apr 1964, RRS Discovery); floats 161-180 (Apr-Aug 1964, RRS Discovery). NW Mediterranean: floats 209-227 (Feb-Mar 1969, RRS Discovery). The reports were produced by the National Institute of Oceanography (NIO), which later became the Institute of Oceanographic Sciences Deacon Laboratory.

  • A vector polyline at 60 deg S which is the northern limit for ADD datasets.

  • The data set comprises temperature, pressure, position and occasionally wave data from nine drifting buoys that were deployed across the Southern Hemisphere. Data were collected from 1979 to 1981. Each buoy carried surface pressure and sea temperature sensors, and seven of the buoys were equipped with drogues in order to aid the study of large scale, near surface ocean currents, and to complement concurrent oceanographic observations made in the area by the research ship RRS Discovery. Two of the buoys were designed with good wave following characteristics and contained accelerometers and simple processors so as to yield good wave information. The buoys were equipped with UHF telemetry transmitters to relay data to the ARGOS system on board the polar orbiting meteorological satellites Tiros-9 and NOAA-6. The buoys were were deployed by the Institute of Oceanographic Sciences Wormley Laboratory UK as part of the First Garp Global Experiment (FGGE) Southern Hemisphere Drifting Buoy Network.

  • The data set comprises of geophysical observations in the source regions of the 2004 and 2005 great Sumatra earthquakes. Geophysical surveys were carried out to determine the seabed bathymetry and underlying structure and geometry and included the collection of seismic reflection, magnetic, gravity, and sidescan sonar data. In addition, Conductivity-Temperature-Depth (CTD) and Sound-Velocity Probe (SVP) data were collected, as well as continuous meteorological (air pressure, air temperature, radiance, relative humidity, wind direction and speed) and sea surface (temperature and conductivity) data. Data were collected in the Indian Ocean, west and north west of Sumatra between 8 degrees South, 6 degrees North, 94 and 108 degrees East. The data were collected during three cruises, SO198-1, SO198-2 and SO200 over two legs SO200-1 and SO200-2. The three cruises took place between May 2008 and February 2009. The data collection focussed on the areas around two earthquake segment boundaries: Segment Boundary 1 (SB1) between the 2004 and 2005 ruptures at Simeulue Island, and Segment Boundary 2 (SB2) between the 2005 and smaller 1935 ruptures between Nias and the Batu Islands. Measurements were taken using a variety of instrumentation across all three cruises including: the long-term deployment of 50 Ocean-Bottom Seismometers (OBS) deployed on cruise SO198-1 and retrieved on cruise SO200-1; 154 Expendable Bathythermograph (XBT) probes; high resolution multichannel seismic reflection (MCS) profilers; Swath bathymetric and backscatter echosounders; SVPs and CTDs which were deployed simultaneously; and a gravity meter and Parasound sub-bottom profiler were operated continuously within the survey areas. In addition, sea surface and meteorological measurements were made using the underway system throughout the three cruises, although there are no data for days at the beginning and end of the cruises of up to 10 days. During the two legs of SO200 additional instrumentation was deployed including: a 30 kHz deep-towed sidescan sonar system (TOBI); piston cores and megacores collected along the plate margin; and heatflow probes long transects. The UK Sumatra Consortium project aimed to characterise the subduction boundary between the Indian-Australian plate and the Burman and Sumatra blocks (including subduction zone structure and rock physical properties), record seismic activity, improve and link earthquake slip distribution to the structure of the subduction zone and to determine the sedimentological record of great earthquakes (both recent and historic) along this part of the plate margin. The project will allow better assessment of future earthquake magnitudes and locations, and further the general understanding of the earthquake rupture process. The UK Sumatra Consortium project was led by the National Oceanography Centre Southampton (NOCS) and involved five UK partners; NOCS, the universities of Cambridge, Oxford and Liverpool, and the British Geological Survey as well as numerous international partners including French, German, American, Indonesian and Indian Collaborators. The principal investigator was Dr Timothy Henstock from NOC. The Natural Environment Research Council (NERC) funded data will be managed by the British Oceanographic Data Centre (BODC).

  • The Carbon Uptake and Seasonal Traits in Antarctic Remineralisation Depth (CUSTARD) data set comprises hydrographic data, including measurements of temperature, salinity and currents, complemented by bathymetric, meteorological and nutrient data. All the observational data from the project were collected at, and south of, the Ocean Observatories Initiative (OOI) Global Southern Ocean Array, located south-west of Chile. Data collection activities span from November 2018 to January 2020 over 3 cruises (DY096, DY111 and DY112). The main aim of the CUSTARD project is to quantify the seasonal drivers of carbon fluxes in a region of the Southern Ocean upper limb, and estimate how long different quantities of carbon are kept out of the atmosphere based on the water flow routes at the observed remineralisation depths. The lead grant was funded by the NERC grant reference NE/P021247/1 with child grants NE/P021328/1, NE/P021336/1, NE/P021263/1. NE/P021247/1 was held at the National Oceanography Centre, led by Adrian Martin. Child grants were lead by Mark Moore of University of Southampton, Simon Ussher of University of Plymouth and Dorothee Bakker of University of East Anglia respectively.

  • This dataset consists of biogeochemical parameters of nitrate, phosphate, oxygen, chlorophyll-a and phytoplankton concentrations, net primary productivity and attenuation generated by the POLCOMS-ERSEM coupled hydrodynamic-ecosystem model. The modelled dataset is from the Atlantic Margin Model (AMM) implementation, extending from 40.1 to 64.9 degrees latitude north and from 19.9 degrees longitude west to 13 degrees longitude east. The dataset is on a latitude/longitude grid with latitudinal resolution of 12.3 km and longitudinal resolution between 7.8 km and 14.2 km. The data are available as monthly averages saved in annual files for the 38 year period from January 1967 to December 2004. The dataset was generated by the Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) and the Plymouth Marine Laboratory European Regional Seas Ecosystem Model (ERSEM). This work is funded by the Natural Environment Research Council (NERC) National Capability funding in order to investigate the biogeochemical factors which affect primary production in the northwest European continental shelf. The dataset was generated by the UK National Oceanography Centre, Liverpool. The dataset consists of 38 data files in Climate and Forecast (CF) compliant NetCDF format. More information about the modelled data set and its applications can be found in Holt et al. (2012).

  • This datset contains operational taxonomic units for epilithon eukaryotes (water samples): Approximate location of sampling sites was determined from maps to provide good spatial coverage of the Wold River through to the Tamar River. Exact sites were determined in the field, considering accessibility and other logistics. The exact location of each sample site was determined using a Garmin GPS12. Three stones were taken from each of the 20 locations and epilithon removed from a defined area. Samples were kept in the cold and removed to the laboratory for analyses. DNA was extracted from all soil and epilithon samples using the MOBIO Powersoil 96 well DNA extraction kit. DNA was quality checked for purity and yield prior to submission for 454 pyrosequencing to assess both bacterial and eukaryotic biodiversity within each sample. Following bioinformatic sequence processing, sequencing were clustered into operational taxonomic units (OTU) and the data tables display the percentage of each OTU within each sample. Full details about this dataset can be found at